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Introduction 
 

This writeup goes into some basics of how TensorFlow works and an implementation in 

TensorFlow for fitting a polynomial. This is part 1 and covers forward calculations only. In 

Tensorflow, the data is represented by the tf.Tensor class and the neural layers are represented by 

the tf.Layer class where tf is the variable representing the python tensorflow module. 

 

Tensors 
 

A tensor in physics is a linear mathematical object whose properties are invariant with respect to 

coordinate transforms. A scalar is independent of coordinate changes and is a zero rank tensor. A 

vector is a single geometric object whose components change under coordinate transformations 

although its geometric properties remain the same. Figure 1 shows a vector in an 𝑥𝑦 coordinate 

system. 

 

 

 

 

 

 

 

 

 

Figure 1 

 

The vector’s properties - magnitude |𝒗|and angle 𝜃 - are invariant under coordinate transforms 

and therefore the dot product is invariant as well – see equation (1). A vector is a first rank 

tensor. 

 

𝒗 ∙ 𝒙 = 𝒗′ ∙ 𝒙′ = |𝒙||𝒗|𝑐𝑜𝑠(𝜃) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ⇒ 

 

𝒖 ∙ 𝒗 = 𝒖′ ∙ 𝒗′ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(1) 

The arbitrary vectors 𝒖 and 𝒗 must transform in a way to keep the dot product constant. For a 

simple example, let 𝐴 be a transformation from Cartesian to Polar coordinates. 
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𝐴 = [
𝑐𝑜𝑠(𝛼) 𝑠𝑖𝑛(𝛼)

−𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼)
] 

(2) 

Define two vectors 𝒖 and 𝒗. 

 

𝒖 =
1

√2
𝒙̂ +

1

√2
𝒚̂ = [

1

√2

1

√2
] 

(3) 

 

𝒗 = 𝒙̂ = [1 0] 
(4) 

 

Set 𝛼 =
𝜋

3
 in equation (2) ⇒ 

 

𝐴 = [
1

2⁄
√3

2
⁄

−√3
2

⁄ 1
2⁄

] 

 

𝒖′ =

[
 
 
 
 1 + √3

2√2

−√3 + 1

2√2 ]
 
 
 
 

= [
1

2⁄
√3

2
⁄

−√3
2

⁄ 1
2⁄

] [

1
√2

⁄

1
√2

⁄
] 

 

𝒗′ =

[
 
 
 

1

2

−√3

2 ]
 
 
 

= [
1

2⁄
√3

2
⁄

−√3
2

⁄ 1
2⁄

] [
1
0
] 

 

𝒖 ∙ 𝒗 =
1

√2
= 𝒖′ ∙ 𝒗′ =

1 + √3

4√2
+

3 − √3

4√2
=

4

4√2
=

1

√2
 

(5) 

 

Equation (5) works because this is a special case where 𝐴 is an orthonormal matrix and 𝒙𝒚 is an 

orthonormal coordinate system - so  

 

𝐴−1 = 𝐴𝑇 ⇒ (𝐴−1)𝑇 = 𝐴 

(6) 

For non-orthonormal coordinate systems, we would transform one of the vectors using (𝐴−1)𝑇- 

see12 for a more detailed explanation. 

 

 
1 General Coordinates 
2 Curvilinear Coordinates 

https://631caa7c-d440-41ad-a8ec-b36fa4a0497b.filesusr.com/ugd/55ccdb_c8d7b81de7cb4490904b701a24f204fe.pdf
https://631caa7c-d440-41ad-a8ec-b36fa4a0497b.filesusr.com/ugd/55ccdb_ada1e5e82f70439e9a180d0929df48d4.pdf
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Another example is the metric tensor 𝐺 which is a 2𝑛𝑑 rank tensor that defines distance and is 

represented by a matrix. The distance is invariant under a coordinate transform as shown in 

equation (7). 

 

𝒙𝑻𝐺𝒙 = [𝑥1 ⋯ 𝑥𝑛] [

𝑔11 ⋯ 𝑔1𝑛

⋮ ⋱ ⋮
𝑔𝑛1 ⋯ 𝑔𝑛𝑛

] [

𝑥1

⋮
𝑥𝑛

] = 𝑔𝑖𝑗𝑥𝑖𝑥𝑗 = 𝒙𝑻′
𝐺′𝒙′ ≡ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 ≡ Invariant 

(7) 

 

The vector 𝒙 and tensor 𝐺 components transform to keep the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 invariant. 

 

Tensors are mathematically represented by scalars, vectors, matrices, and multidimensional 

arrays. In machine learning, a tensor is a scalar, vector, or multidimensional array. Some 

examples are listed. 

 

Scalar ≡ [𝑎] ≡ 0𝑡ℎ rank tensor 

 

Vector ≡ 𝒗 = [𝑣1 ⋯ 𝑣𝑛] = 𝑣𝑖 ≡ 1𝑠𝑡 rank tensor 

 

Metric 𝐺 = [
𝐺11 ⋯ 𝐺1𝑛

⋮ ⋱ ⋮
𝐺𝑛1 ⋯ 𝐺𝑛𝑛

] = 𝐺𝑖𝑗 ≡ 2𝑛𝑑 rank tensor 

 

3𝑟𝑑 rank tensor 𝑇 = [𝑀1 ⋯ 𝑀𝑛] = 𝑇𝑖𝑗𝑘 where 𝑀𝑛 are 2𝑛𝑑 rank tensors 

 

Higher order tensors continue using this same pattern. Because tensors have invariant properties 

under coordinate transforms, equations involving tensors have the same form in all coordinate 

systems. If a tensor equation is true in one coordinate system, then it is true in all coordinate 

systems. Equations (1) and (7) are examples of tensor equations. 

 

Tensor Notation 
 

Tensors can be represented in an index notation called tensor notation. Component versions of 

the above are shown below. 

 

Vector ≡ 𝑣𝑖 

 

Inner product ≡ 𝑢𝑖𝑣𝑖 = [𝑢1 ⋯ 𝑢𝑛] [

𝑣1

⋮
𝑣𝑛

]  

(8) 

as defined in equation (1) is constant (invariant). 

 

Repeated indices have an implied summation and is called Einstein’s convention. So, 
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𝑢𝑖𝑣𝑖 = ∑𝑢𝑖𝑣𝑖

𝑖

 

(9) 

Outer product ≡ 𝑢𝑖𝑣𝑗 = [

𝑢1

⋮
𝑢𝑛

] [𝑣1 ⋯ 𝑣𝑛] = [

𝑢1𝑣1 ⋯ 𝑢1𝑣𝑛

⋮ ⋱ ⋮
𝑢𝑛𝑣1 ⋯ 𝑢𝑛𝑣𝑛

]  

(10) 

where  

the normal rules of matrix multiplication are used.  

In this case there are no repeated indices, so there are no implied sums. 

 

Matrix Multiplication of column vector ≡ 𝒖 = 𝑢𝑖 = 𝑀𝑖𝑗𝑣𝑗 = 𝑀𝒗 ⇒ 

 

𝒖 = [
𝑀11 ⋯ 𝑀1𝑛

⋮ ⋱ ⋮
𝑀𝑛1 ⋯ 𝑀𝑛𝑛

] [

𝑣1

⋮
𝑣𝑛

] 

(11) 

 

Note: there is an implied sum over 𝑗. 
 

Matrix Multiplication of row vector ≡ 𝒖𝑻 = 𝑢𝑗 = 𝑣𝑖𝑀𝑖𝑗 = 𝒗𝑻𝑀 ⇒ 

 

𝒖𝑻 = [𝑢1 ⋯ 𝑢𝑛] = [𝑣1 ⋯ 𝑣𝑛] [
𝑀11 ⋯ 𝑀1𝑛

⋮ ⋱ ⋮
𝑀𝑛1 ⋯ 𝑀𝑛𝑛

] 

(12) 

Note: there is an implied summation over 𝑖. 
 

Tensors in Tensorflow 
 

Tensors in machine learning are the mathematical structures that are used to represent tensors - 

scalars, vectors, matrices, and multidimensional arrays. For this discussion, tf represents the 

python tensorflow module and np represents the python numpy module. 

 

import tensorflow as tf 

import numpy as np 

 

There are two ways to instantiate a variable in tensorflow 2.0. 

 

1.) tf.constant(𝑣𝑎𝑙𝑢𝑒, 𝑑𝑡𝑦𝑝𝑒) → values cannot be changed 

2.) tf.variable(𝑣𝑎𝑙𝑢𝑒, 𝑑𝑡𝑦𝑝𝑒) → values can be changed 

 

where 

 value is a python list and gets turned into a numpy array 

 dtype is the numeric type – see documentation - Tensorflow dtypes 

 

https://www.tensorflow.org/api_docs/python/tf/dtypes/DType
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Example: 

 

test =tf.constant([1 2], 𝑡𝑓. 𝑓𝑙𝑜𝑎𝑡32) 

 

Figure 2 shows the output of the variable test in a python console where TensorFlow’s eager 

execution has been enabled so tensors are evaluated immediately. 

 

<tf.Tensor: shape=(2,), dtype=int32, numpy=array([1, 2])> 

Figure 2 

 

Note: arrays are defined in terms of nested lists in python, for example, 

 

A vector ≡ 𝑣 = [𝑣1 ⋯ 𝑣𝑛] 
 

An 𝑚 × 𝑛 matrix ≡ 𝑀 = [[𝑀11 ⋯ 𝑀1𝑛] ⋯ [𝑀𝑚1 ⋯ 𝑀𝑚𝑛]] →  

 

[
1 2 3
4 5 6

] is represented by the list [[1 2 3] [4 5 6]] and is implemented in numpy by  

 

the following statement: 

 

np.array([[1 2 3] [4 5 6]]) 

 

The pattern continues for higher rank tensors. 

 

Tensor Algebra in TensorFlow 
 

The functions tf.matmul and tf.linalg.matmul perform matrix multiplication but need the input to 

be two matrices, and causes an error when trying to multiply a matrix by a vector. This is a less 

efficient way to perform algebra involving both vectors and matrices because vectors would have 

to be converted to matrices. An extremely flexible way to perform tensor algebra in TensorFlow 

is using the function tf.einsum which implements the Einstein summation index notation. If there 

are both vectors and matrices, tf.einsum can use them directly without conversion. Another 

advantage of tf.einsum is that it generalizes to expressions with tensors of rank greater than two. 

 

The signature for tf.einsum is tf.einsum(equation, *inputs) 

 

where 

 *inputs ≡ a list of tensors – for example 𝒖, 𝒗 

equation ≡ a string representation of indices used in the expression. For example, the 

expression 𝑢𝑖𝑣𝑗  would lead to the equation variable ′𝑖, 𝑗′ which represents the indices in 

the equation. Note: the comma separates tensors in an expression ⇒ ′𝑖′ is used with 𝑢 and 

′𝑗′ is used with 𝑣. An arrow can be used in this string but is not always necessary ⇒
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′𝑖, 𝑗 → 𝑖𝑗′. In the following examples, the arrow is only necessary for the matrix 

transpose. 

 

Define the following: 

 

𝒖 = [3 4] 
𝒗 = [5 6] 
 

𝐴 = [
7 8
9 10

] 

 

𝒘 = [11 12] 
 

Outer Product 
 

The outer product of 𝒖 and 𝒗 would be implemented as  

 

tf.einsum(′𝑖, 𝑗′, u, v) = 𝑢𝑖𝑣𝑗 = 𝒖𝑻𝒗 = [
3
4
] [5 6] = [

15 18
20 24

] 

(13) 

The equation variable could also be written as ′𝑖, 𝑗 → 𝑖𝑗′  which in this case is not necessary. 

 

Inner Product 
 

To implement an inner product of 𝑢 and 𝑣, use ′𝑖, 𝑖′ or ′𝑖, 𝑖 → ′ as the index equation as shown 

below. 

 

tf.einsum(′𝑖, 𝑖′, u, v) = 𝑢𝑖𝑣𝑖 = 3 × 5 + 4 × 6 = 15 + 24 = 39 

(14) 

Note that the index equation ′𝑖, 𝑖′ uses the Einstein summation convention of summing over 

repeated indices. 

 

Matrix Multiplication of a Column Vector 
 

tf.einsum(′𝑖𝑗, 𝑗′, A, u) = 𝐴𝑖𝑗𝑢𝑗 = 𝐴 = [
7 8
9 10

] [
3
4
] = [

53
67

] 

(15) 

Matrix Multiplication of a Row Vector 
 

tf.einsum(′𝑖, 𝑖𝑗′, u, A) = 𝑢𝑖𝐴𝑖𝑗 = 𝒖𝑻𝐴 = [3 4] [
7 8
9 10

] = [57 64] 

(16) 
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Outer Product of Three Vectors 
 

tf.einsum(′𝑖, 𝑗, 𝑘′, u, v, w) = 𝑇𝑖𝑗𝑘 = 𝑢𝑖𝑣𝑗𝑤𝑘 = [[
165 180
198 216

] [
220 240
264 288

]] 

(17) 

 

The indices are in sequential order. Here the indices associated with equation (17). 

 

𝑖, 𝑗, 𝑘 → [[
000 001
010 011

] [
100 101
110 111

]] 

(18) 

 

where 𝑖, 𝑗, 𝑘 are indexed 0,1 

 

Matrix Transpose 
 

This is a case where the arrow → is necessary. 

 

tf.einsum(′𝑖𝑗 → 𝑗𝑖′, 𝐴) ≡  𝐴𝑖𝑗
𝑇 = 𝐴𝑗𝑖 

(19) 

Layers in TensorFlow 
 

Layer is defined by tf.keras.layers.Layer and is the base class for all other layer classes in 

tensorflow – see Layer. 

 

Layer classes inheriting from Layer can implement the following methods 

 

1.) __init__(self) – input variables of class 

2.) build(self, input_shape) – sets up weights and biases 

3.) call(self, _inputs) - _inputs are a tensor of inputs 

 

The call method performs the computation on the input tensor and it implicitly calls the build 

method. The call method is called when passing an input tensor to the layer as shown in equation 

(20). 

 

𝒚 = 𝑐𝑢𝑠𝑡𝑜𝑚𝐿𝑎𝑦𝑒𝑟(𝒙) 

 (20) 

 

where  

 𝒚 is the resultant tensor 

 𝒙 is the input tensor 

 

  

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer
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Processing Weights and Biases 
 

In TensorFlow, the activation functions operate on tensors and is the reason there is only one 

activation function per layer. Figure 3 shows the inputs fed to the activation functions using 

weights and biases in a very simple neural network. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

 

Note: the subscripts of the weights give the node numbers forming the connection. The 

superscript is the layer number, so 𝑤𝑓𝑟𝑜𝑚 𝑡𝑜
𝑙𝑎𝑦𝑒𝑟

 is the format ⇒ 𝑤01
0  means 0𝑡ℎ layer from 𝑥0 to ℎ1. 

 

Figure 3 can be thought of in terms of vectors and matrices. Equation (21) shows the equation for 

𝑢0. 

 

𝑢0 = ∑𝑥𝑖𝑤𝑖0
0 = [𝑤00 𝑤10 𝑤20] [

𝑥0

𝑥1

𝑥2

]

𝑖

 

(21) 

 

Nodes 𝑢1, and 𝑢2 use the same pattern ⇒ 

 

[

𝑢0

𝑢1

𝑢2

] = [

𝑤00 𝑤10 𝑤20

𝑤01 𝑤11 𝑤21

𝑤02 𝑤12 𝑤22

] [

𝑥0

𝑥1

𝑥2

] = 𝑊𝒙 

(22) 

  

𝑥0 

𝑥1 

ℎ0(𝑢0 + 𝑏0) 

ℎ1(𝑢1 + 𝑏1) 

𝑤00
0  

𝑤01
0  

𝑤02
0  

𝑤10
0  

𝑤11
0  

𝑤12
0  

𝑤20
0  

𝑤21
0  

𝑥2 ℎ2(𝑢2 + 𝑏2) 
𝑤22

0  

∑𝑥𝑖𝑤𝑖0

𝑖

 
𝑢0 

∑𝑥𝑖𝑤𝑖1

𝑖

 
𝑢1 

∑𝑥𝑖𝑤𝑖2

𝑖

 

𝑢2 

𝑦0 

𝑦1 

𝑦2 
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Adding the biases and feeding into the activation function 𝐻 ⇒ 

 

𝒚 = 𝐻(𝑊𝒙 + 𝒃) 

(23) 

where  

 𝒃 is the bias vector 

 𝒙 is the input vector 

 𝐻 is the activation function 

 

Note: equation (23) implies that ℎ0(𝑥), ℎ1(𝑥), ℎ2(𝑥) are the same function ℎ(𝑥) and 

𝐻(𝑋) operates on the entire layer applying the activation function on the tensor 𝑋. 

 

Equation (23) is what would be implemented in the call method described above to implement 

the neural network in Figure 3. 

 

If 𝑥0 ,⋯, 𝑥𝑛 are vectors, then 𝒙 ⇒ 

 

𝑋 = [
𝒙𝟎

𝑻

⋮
𝒙𝒏

𝑻
] = [

𝑥00 ⋯ 𝑥0𝑛

⋮ ⋱
𝑥𝑛0 ⋯ 𝑥𝑛𝑛

] 

(24) 

and equation (23) ⇒ 

 

𝑌 = 𝐻(𝑊𝑋 + 𝒃) 

(25) 

Note: the bias 𝒃 and is added to a matrix which is not mathematically allowed. In tensorflow, 

adding a scalar to a vector using the " + " operator adds the scalar to each component of the 

vector. In equation (25), adding a bias vector to a matrix adds the 𝑏𝑖 component to the 𝑖𝑡ℎ row of 

the matrix.  
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TensorFlow Implementation of Neural Fit 
 

Figure 4 shows the neural net from Universal Approximation Theorem. 

 

 
                Figure 4 

 

To implement Figure 4 in TensorFlow, we use three layers. The first is a fan-out layer that takes 

the input and stacks it so it can be fed into multiple neurons. The second is an ReLU layer that, 

adds the bias terms to the input and computes the ReLU function on the result. This implements 

equation (23) with 𝑊 = 𝐼. The third is a summation layer that adds weighted outputs from 

multiple neurons and is equation (23) with 𝒃 = 0 and no activation function. 

 

1.) Fan-out Layer 
 

The Fan-out layer stacks the input 𝒙, so it can be fed into multiple neurons as shown in 

Figure 4 and Equation (26). 

 

𝒙 = [

𝑥0

⋮
𝑥𝑛

] 

 

𝑋1 = [
1
⋮
1
]⨂ 𝒙 = [

1
⋮
1
] [𝑥0 ⋯ 𝑥𝑛] = [

𝑥0 ⋯ 𝑥𝑛

⋮ ⋱ ⋮
𝑥0 ⋯ 𝑥𝑛

] = [
𝒙𝑻

⋮
𝒙𝑻

] 

(26) 

  

 nput  

h 
 
       

 
 

h 
 
       

 
 

 

h 
n
       

n
 

 

w 
 

w 
 

w 
n

output     

  
 

https://631caa7c-d440-41ad-a8ec-b36fa4a0497b.filesusr.com/ugd/55ccdb_9645a41f79ab4eee84139f87f2f7f7f6.pdf
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where 

𝑋1 is the matrix output of the Fan-out layer  

⨂ is the outer product operator 

𝒙𝑻 is the input vector as a row in 𝑋1 ⇒ each row is a replicated input vector. 

 

2.) ReLU Layer 

 

The ReLU Layer adds a bias term to each row of the input 𝑋1 and feeds the result into the 

ReLU function. The weight matrix is implicitly the identity matrix and this layer 

implements equation (23) with 𝐻(𝑋) = 𝑅𝑒𝐿𝑈(𝑋). 
 

3.) Summation Layer 
 

The summation layer is the    ∑ node in Figure 4 which performs the weighted sum  

 

of 𝑅𝑒𝐿𝑈(𝑋 + 𝒃) as shown in equation (27). 

 

𝑦𝑗 = 𝑦𝑏 + ∑𝑤𝑖𝑋1𝑖𝑗

𝑖

 

(27) 

 

where 

  𝑤𝑖 is the 𝑖𝑡ℎcomponent of the weight vector 

  𝑋1 ≡ matrix output from the Fan-out layer 

𝑦𝑗 ≡ is the output row vector 

𝑦𝑏 ≡ is the system bias 

 

Use tf.einsum to implement equation (27) ⇒ 𝑦 = tf.einsum(′𝑖, 𝑖𝑗′, 𝑤, 𝑋1) 

 

Figure 5 shows the result of fitting 1 2⁄ (5𝑥3 − 3𝑥) with 20 neurons in the interval [−1 1] 

implemented with tensorflow – equation (23). Note: the graph uses the interval [−2 2] to show 

the behavior outside of the [−1 1] interval and the mean square error is computed in the 
[−1 1] interval only. 
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Figure 5 

 


