
1 
 

Universal Approximation Theorem 

By 

Al Bernstein 
4/28/2021 

http://www.metricmath.com 

al@metricmath.com 

Introduction 
 

The universal approximation theorem states that an arbitrarily complex neural network, with 

squashing functions as activation functions, can approximate any continuous function to any 

degree of desired accuracy. A squashing function is a function that has a finite range – for 

example −1 ≤ 𝑡𝑎𝑛ℎ(𝑥) ≤ 1. For an 𝑛𝑡ℎ order polynomial 𝑃𝑛(𝑥), for 𝑛 > 0 ⇒  

lim
𝑥→±∞

𝑃𝑛(𝑥) → ±∞, so polynomials are not squashing functions. A polynomial could be 

squashed i.e. defined to be within a finite range. For example, a polynomial could be defined in a 

given interval over 𝑥 and equal the endpoints outside of that interval. This writeup gives a simple 

demonstration of the theorem. For practical purposes, the function to be approximated will have 

a finite domain and range. The approach is to perform a forward calculation – compute the 

weights and biases analytically and show that it can approximate any finite continuous function. 

A second approach is presented using the soft exponential activation function (SEU).  

 

Neural Networks implement a function. that map an input to an output. Figure 1 shows a single 

layer neural network structure with one input and one output. 

 
Figure 1 
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where  

ℎ𝑖(𝑥) are the activation functions 

𝑤𝑖 are the weights 

𝑏𝑖 are the bias terms. 

𝑦1 is a bias added to the output. 

 

Equation (1) gives the equation for the neural net in Figure 1. 

 

𝑦(𝑥) =∑𝑤𝑖ℎ𝑖(𝑥 − 𝑏𝑖)

𝑖

+ 𝑦1 

(1) 

Usually, for a given layer, the activation functions are the same. 

 

Simple Demonstration of the Theorem 
 

We can try to build up the network in Figure 1 to fit any continuous function within a finite 

interval. We use the rectified linear unit 𝑅𝑒𝐿𝑈(𝑥) as the activation function. Figure 2 shows how 

to add two 𝑅𝑒𝐿𝑈 functions to produce a line within a given interval i.e. a squashed line. 

 

 

 
Figure 2 

 

The black dotted line is given by equation ℎ(𝑥) and the red dotted line is given by  

−ℎ(𝑥 − 2). The solid green line is the sum of the dotted black and green lines and is given by 

equation (2). 

 

𝑦(𝑥) = ℎ(𝑥) − ℎ(𝑥 − 2) 
(2) 
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For 𝑥 ≥ 2, the slopes cancel and become 0 with a 𝑦 – intercept of 2 at 𝑥 = 2. 

 

Now we can simply break any function 𝑓(𝑥) into intervals in 𝑥, compute the slopes over those 

intervals and use equation (1) to approximate the function over those intervals. Note that the y-

intercept is calculated for the first interval only and is described further below. The function to 

be approximated - 𝑦 - is broken into points. The 𝑥 and 𝑦 components are shown in equation (3). 

 

 
[(𝑥0 𝑦0), (𝑥1 𝑦1),⋯ , (𝑥𝑖 𝑦𝑖) ] 

(3) 

 

The slope over each interval is computed as shown in equation (4). 

 

𝑚𝑖−1 =
𝑦𝑖 − 𝑦𝑖−1
𝑥𝑖 − 𝑥𝑖−1

 

(4) 

The function is defined as shown in equation (5) 

 

𝑓(𝑥) = {

𝑚0𝑥 + 𝑏0, 𝑥0 ≤ 𝑥 ≤ 𝑥1
𝑚1𝑥,                    𝑥1 ≤ 𝑥 ≤ 𝑥2

⋮
 𝑚𝑖−1𝑥,               𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖

 

(5) 

 

Notice that the intervals connect – for example 𝑥1 is the end of the first interval and beginning of 

the second interval. Because we are requiring 𝑓(𝑥) to be continuous ⇒ 𝑓(𝑥1) has to be the same 

when approached by the left or right – i.e.  

 

𝑓(𝑥1)
− = 𝑓(𝑥1)

+ 

(6) 

 

After the first point the 𝑦 – intercept is not needed because the previous line ends where the next 

line begins. 
 

To illustrate, suppose we want to approximate 𝑥2 over −2 ≤ 𝑥 ≤ 2 

 

We can start out with three points as shown below.  

 
[(−2 4), (0 0), (2 4) ] ⇒ 

 

Computing the slopes ⇒ 

 

𝑚0 =
0 − 4

0 + 2
= −2, −2 ≤ 𝑥 ≤ 0 
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𝑚1 =
4 − 0

2 − 0
= 2,       0 ≤ 𝑥 < 2 

 

𝑚2 = 0, 𝑥 ≥ 2 

 

To produce these slopes at the corresponding 𝑥’ s ⇒ 

 

𝑦𝑟(𝑥) = 4 − 2ℎ(𝑥 + 2) + 4ℎ(𝑥) − 2ℎ(𝑥 − 2) 
(7) 

 

where  

 𝑦𝑟(𝑥) ≡ reconstructed or approximating function 

 

Going through equation (7) ⇒ 

 

At 𝑥 = −2 ⇒ 𝑓(𝑥) = 4 

 

Since 𝑏0 = 4 and 𝑚0 = −2 ⇒ 𝑤0 = −2 ⇒ 

 

𝑦𝑟(𝑥) = 4 − 2ℎ(𝑥 + 2) 
 

At 𝑥 = 0  
 

Since 𝑚1 = 2 and 𝑚0 = −2, the slope at 𝑥 > 0 ⇒ 𝑤1 = 4 

 

So  

 

𝑦𝑟(𝑥) = 4 − 2ℎ(𝑥 + 2) + 4ℎ(𝑥) 
 

For   𝑥 ≥ 2, 𝑚2 = 0, and 𝑚1 = 2 ⇒ 𝑤2 = −2 

 

𝑦𝑟(𝑥) = 4 − 2ℎ(𝑥 + 2) + 4ℎ(𝑥) − 2ℎ(𝑥 − 2) 
 

Figure 3 shows equation (7) plotted against 𝑥2 for 200 points between −3 and 3. 
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Figure 3 

 

 

Figures 4, 5, and 6 show 7, 11, and 20 neurons respectively. 

 

 
Figure 4 
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Figure 5 

 

 
 

Figure 6 

 

 

As the number of neurons goes up, the mean squared error goes down which shows that the 

desired accuracy can be obtained – within numerical precision – by adding more neurons. 
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Another Function for Comparison 

 

Figure 7 shows another polynomial to show how the approach works with a different function. 

This polynomial is given by equation (8).  

 
1

2
(5𝑥3 − 3𝑥)  [−1 ≤ 𝑥 ≤ 1] 

(8) 

 

Outside of the   [−1 ≤ 𝑥 ≤ 1] range the neural net reconstruction is the value of the function at 

the endpoints of the range - ±1 in this case. Note: that the mean square error is computed inside 

the interval of interest - [−1 ≤ 𝑥 ≤ 1]. 
 

 

 
 

Figure 7 

 

Normalizing the Range and Domain of 𝒇 

 

The range of a function – 𝑦 – values can be normalized by dividing all the values by the 

maximum value. In machine learning, it is helpful to normalize the input in the domain - 𝑥 – as 

well to bound the search space. The 𝑥 values can be mapped into and out of a normalized range 

using Equation (9) - 𝑥 is in the interval [𝑎 𝑏] and 𝑥1 is in the interval [𝑐 𝑑]. The ratio of ∆𝑥 

and ∆𝑥1over their respective intervals remains constant i.e. 1 2⁄  or 1 4⁄  etc. ⇒ 

 
∆𝑥

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
=
𝑥 − 𝑎

𝑏 − 𝑎
=
𝑥1 − 𝑐

𝑑 − 𝑐
≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ⇒ 
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𝑥1 =
𝑑 − 𝑐

𝑏 − 𝑎
(𝑥 − 𝑎) + 𝑐 

(9) 

 

 

 

The normalization bounds the 𝑤𝑖 – range variables - into a range of [−1 1].  The domain 

variables -𝑏𝑖-can be bounded into an interval the user feels would get the best results and this 

could also be a range of [−1 1]. 
 

Normalizing Example 

 

For an example, the approximation function is 𝑥2 for −2 ≤ 𝑥 ≤ 2 and 2 as shown in Figure 8. 

 

 
Figure 8 

 

We will normalize it, then fit it, and then de-normalize the fitted function to show that it 

approximates the original function. 
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Figure 9 shows the function in Figure 8 after normalization in 𝑥 and 𝑦.  

 

 
 

Figure 9 

 

Figure 10 shows a five neuron fit to the normalized function. Normalize 𝑦 by dividing by the 

maximum value – in this case by 4.0 – and normalize 𝑥 using equation (9) with [𝑎 𝑏] =
[−2 2] and [𝑐 𝑑] = [−1 1] 
 

 
 

Figure 10 
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Now de-normalize the data from Figure 10 – for 𝑦 multiply by 4.0 and 𝑥 using equation (9) with 
[𝑎 𝑏] = [−1 1] and [𝑐 𝑑] = [−2 2] to get the five neuron approximation to the original 

function as shown in Figure 11. 

 

 
Figure 11 

 

Figure 11 shows that the fit is reasonable given the number of neurons. The importance of this 

process is that normalization sets boundaries to limit the search space of the optimizer. 

 

Another Approach to Fit Polynomials  
 

The soft exponential activation unit function1 is shown in equation (10).  

 

𝑆𝐸𝑈(𝛼, 𝑥) =

{
 
 

 
 
−𝑙𝑛(1 − 𝛼(𝑥 + 𝛼))

𝛼
, 𝛼 < 0

𝑥 ,                                           𝛼 = 0
𝑒𝛼𝑥 − 1

𝛼
+ 𝛼,                        𝛼 > 0

 

(10) 

 

This activation function is more suited to working with multiplications and polynomials because 

it can be an 𝑒𝑥, 𝑥, or 𝑙𝑛(𝑥), with the proper choice of 𝛼. 

 

For 𝛼 = −1 ⇒ 𝑆𝐸𝑈(−1, 𝑥) = 𝑙𝑛(𝑥)  

 
1 Godfriey L. and Gashler M. , “A Continuum among Logarithmic, Linear, and Exponential Functions, and Its 
Potential to Improve Generalization in Neural Networks”, Proceedings of the 7th International Joint Conference on 
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 1: KDIR, pp 481 
– 486. 
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For 𝛼 = 0 ⇒ 𝑆𝐸𝑈(0, 𝑥) = 𝑥 

 

For 𝛼 = 1 ⇒ 𝑆𝐸𝑈(1, 𝑥) = 𝑒𝑥 

 

Note: the above functions have to be bounded in a finite domain and range. 

 

Figures 12 show a neural configuration to implement a polynomial element and the 𝑆𝐸𝑈(𝛼, 𝑥) 
implementation. 

 

 

 

 

 
Figure 12 

 

 

The equation that Figure 12 implements is shown in equation (11) 

 

𝑦2(𝑥) = 𝜔1exp[𝛼1𝑙𝑛(𝑥 + 𝑏1)] = 𝜔1exp[𝑙𝑛(𝑥 + 𝑏1)
𝛼1] = 𝜔1(𝑥 + 𝑏1)

𝛼1 

(11) 

Any continuous function can be approximated to the desired accuracy by using Taylor series 

around a given point – 𝑎 - as shown in equation 12.  

 

𝑓(𝑥) = 𝑓(𝑎) +∑
𝑓(𝑛)(𝑎)

𝑛!
𝑛

(𝑥 − 𝑎)𝑛  [𝑐 ≤ 𝑥 ≤ 𝑑] 

(12) 

 

Any continuous function can be approximated in a finite domain -  [𝑐 ≤ 𝑥 ≤ 𝑑] - and range 

using a set of blocks – from Figure 12 - added together with different 𝛼𝑖 coefficients and biases 

𝑏𝑖 as shown in equation (13). 

 

𝑓(𝑥) =∑𝜔𝑖(𝑥 − 𝑏𝑖)
𝛼𝑖

𝑖

+ 𝑦1     [𝑐 ≤ 𝑥 ≤ 𝑑] 

(13) 

 

       

 

  
 

         
 
 

  
 

  
 
         

 
    

  
 

         
 
   

       

 

  
 

              
 
 

  
 

  
 
            

 
    

  
 

         
 
   


